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MFS The.ory

Abstract

Multilinear Formula Score theory provides power'ul methods for SoI vii

psychological measurement problems of long standing. in this pape, the

question of information in incorrect option selection Oti multiple choice

items is addressed. Multilinear formula scoring (MFS) I-. first used to

estimate option characteristic curves for the Armed Services Vocdtiondl

Aptitude Battery Arithmetic Reasoning test. Accurately estimated curves ae

obtained for real and simulated data. Then the statistical informatiou

about ability is computed for dichotomous and polychotomous scorings of tho

items. Moderate gains in information are obtained for low to slightly above

average abilities. The dichotomous and polychotomous models are then

compared for their relative performances in appropriateness measurement.

The rates of detection of some types o1' aberrance respon itig were more than

100% higher for optimal polychotomous appropriateness indices than any

dichotomous model index. Consequently the MFS polychotonious model provid.;

opportunities for better testing by illowing more accurate ability

estimates, improvements in the theory and practice of' item writing, and more

powerful appropriateness measurement.
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Introduction

Multilinear formula score theory or multilinear formula scoring (MFS;

Levine, 1985a, 1985b) is a nonparametric item response theory for which

consistent and asymptotically efficient estimators o ability densities,

item characteristic curves (ICCs), and option characteristic curves (OCCs)

have been derived and programmed. MFS provides a powerful new approach to

substantive questions of long standing. These questions include determining

the shapes of ability distributions and the magnitudes of differences

between ability distributions of various groups, determining the shapes of

item characteristic curves for unidimensional and multidimensional tests,

identifying biased and other faulty items, and assessing the extent to which

two tests measure the same ability.

In this paper we focus on MFS's ability to estimate efficiently option

response curves from mall samples for responses that may tail to satisfy

the local independence assumption of Item response theory. The benefits of

this endeavor shall be assessed in two ways. First, we determine the

increase in information about ability due to polychotomous scoring ot item

responses. Here the term "information" is used in its statistical sense to

mean the expected squared derivative of the logarithm of the likelihood

function. Since the asymptotic standard error of the maximum likelihood

estimate of an ability B equals the square root or the reciprocal of the

information function at 0 , an increase in information due to polychotomous

scoring is readily translated into percent test length reduction made

possible by polychotomous scoring.

The second comparison is between the dichotomous and polychotomous item

response model's potentials for supporting appropriateness measurement.

Levine and Rubin (1979) introduced this term to refer to model-based methods
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for detecting response patterns that yield faulty measures or ability. For

example, test scores are spuriously high when a low ability examinee copies

some answers from a high ability neighbor or has been given answers to some

questions by 4n informant. Spuriously iow test scores result from alignment

errors, atypical educations, unusual creativity, deliberate failure, and a

variety or other sources.

or course, the model-based detectability of a particular type of

aberrance depends upon the item response model used to analyze the data;

more specific (polychotomous) models are expected to be rejected more

frequently when fitted to aberrant response patterns and thus provide

superior appropriateness measurement. Recently Levine and Drasgow (1984,

1987) developed a technique for computing the power of the most powerful

appropriateness measurement procedure supported by an item response model.

By combining the new optimality results with MFS's ability to accurately

recover the option characteristic curves needed for polychotomous modeling

we intend to determine whether polychotomous modeling is negligibly or

markedly superior to dichotomous modeling in detecting test anomalies.

This study also contributes to formula score theory in that it contains

a verification of MFS theoretical results with simulation data.

Review of Multilinear Formula Score Theory

In this section we review MFS theory as it is used in this paper. The

theory is more general than outlined here, but for the sake of clarity we

describe only the special ease required for the present research.

Let uI denote the response to the ith item of n n item test

scored u, . i if correct and ui - 0 if incorrect. The u.I enerdtp the

elementary formula scores, whi-ch can be enumerited ks
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1

U1 , U2 , ... I n

lU2 , UlU3 . ..- , UnlUn
uu ... u

UU2 un

Traditional formula scoring (Lord and Novick, 1968, especially Chapter

14) generally uses only linear scores. When there is neither omitting nor

polychotomous scoring, linear formula scores are formulas with a constant

term plus a linear combination of the binary item scores, u,, u2, ... , un

(When there is omitting and polychotomous scoring, a linear score is a

constant plus a linear combination of binary variables indicating omitting

and option choice.)

Multilinear formula score theory generalizes traditional formula score

theory by using quadratic scores (linear scores added to linear combinations

of uIu 2, u1u3, ... , un-1u n ), cubic scores (quadratic scores plus linear

combinations of products of item scores for three different items), and

higher order scores. Most of the results in this paper were obtained with

fifth order scores. The new theory is called "multilinear" because frequent

use is made of the fact that when all the scores except one are held

constant, a "linear" score is obtained.

In this paper we shall assume that the regression of u on the latent

trait 0 is a three-parameter logistic ogive

E(u - i~I I a 0 t) =c i * 1 + exp[-Dai(t - bi)]

- P (t) ,
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where D is a scaling constant set equal to 1.702, aI  is the

discrimination parameter, b is the difficulty parameter, and ci  is the

lower asymptote of the ICC. By local independence, the regressions of the

elementary formula scores on the latent trait can then be written

1
P 1(t), P 2(t), ... , P n(t)

P1(O)P2(t), P1(O)P3(t), ... P_(O)PnW

P1(O)P2(t) ... Pnt M

where each P It) is a three-parameter logistic ICC.

There are 2n  regression functions listed above. More can be

generated by taking linear combinations of the elementary formula scores and

then computing their regressions on the latent trait. For example, the

number-right score

X - u 1 + U2 + .. + un

has the regression

n
E(X I t) - E P i(t)

i.1

The collection of regression functions of all linear combination-, of

elementary formula scores is called the canonical space of a test.

A major step in a MFS analysis of a test consists of finding a imaller

number of functions to represent the large number (in fact, an infinite

number) of functions in the canonical space. The smaller collection of

functions is called an orthonormal basis for the canonical space.
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Selecting an orthonormal basis for the canonical space is analogous to

finding the principal components of a set of variables. In a principal

components analysis, the basi- idea is to create a new set of variables, the

principal components, so that each of the original variables can be written

as a linear combination of the principal components plus a small residual.

A principal components analysis is valuable when there is a large number of

original variables and the first few principal components explain almost all

of their variance. In the same way functions in the canonical space are

written as linear combinations of the orthonormal basis functions. For

example, the ICC for the ith item can be written

K
P it) = Eakhk(t)

k=1

where K functions, denoted h1 (t), ..., hK(t) are used in the orthonormal

basis and the ak are the weights used in the linear combination. If K

is sufficiently large, this representation is exact. If only the first J

functions are used, instead of all K functions (where J is less

than K ), then there is some error. However, the residual

J K
PCit) - E akhk (t) - r h kt)

k.1 J+1

will be small if the ak are small for values of k larger than J In

2 2fact, the area under the squared residual is exactly + + ... +

2

In each MFS analysis a parsimonious representation of one or another

collection of functions in the CS is important. MFS provides techniques

that yield basis functions that give small a k for large k , at least for

the collection of functions being analyzed. Most MFS analyses require six
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to eight basis functions for an adequate representation of the functions

being studied. Ten were used in this study.

To recapitulate, the analysis begins by estimating ICCs from the

dichotomously scored item responses. Widely available programs such as

LOGIST and BILOG can be used to this end. The estimated ICCs (and the

assumption of local independence) are subsequently used to define the

canonical space. Then a small number of orthonormal basis functions are

selected so that the functions in the canonical space are well-approximated

by linear combinations of the orthonormal basis functions.

The next step of the MFS analysis is to use the orthonormal basis

functions to represent the option characteristic curves (OCCs). For

technical reasons (see below), we first estimate orthonormal basis function

weights for conditional option characteristic curves (COCCs). A COCC gives

the probability of an option choice given that the person does not choose

the correct option. A COCC equals its associated OCC divided by (1-Pi(e)).

Hence the COCCs for an item sum to 1 for all 8 values whereas the OCCs

sum to 1-Pi(e), which becomes very small for large a values. Each option

characteristic curve is then represented as the product of two linear

combinations of the hi's , namely the representation of 1-Pi and a COCC.

At this point the OCC can be represented by a single set of weights by

calculating weights bi's such that lb h (.) is approximately equal to

(1-P i ) times the COCC value. (An exact representation is not possible in

general because a product of two functions in the canonical space is not

necessarily in the canonical space.)

Since OCCs and COCCs were not included in the set of functions used to

define the canonical space, there is both the mathematical question of how

best to approximate the OCCs and COCCs by basis functions and the
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substantive question of whether or not the basis functions can adequately

approximate OCCs and COCCs. The analysis proceeds item-by-item with the

weights for all the options (including omit as an option) to each item

simultaneously estimated by "marginal" maximum likelihood. The log

likelihood that is maximized with respect to the weights is

N
(1) L = Z log P(u*, v*j)

j-1

where u* is a vector containing the dichotomously scored item responses of

the jth examinee and vj indicates the particular option on item i

selected by examinee j . For a four option multiple-choice item, vj - 1

if option A is selected, ... vj , 4 if option D is selected, and
ii

V*ij - 5 if no response is made. Suppose all the items are recoded so

that option A is always the correct response. Then Equation 1 can be

rewritten as

N

(2) L - E log P(u*) +
J-1

ii

N

Z log I P(uI t) P(v*j l t, uij-O)f(t)dt
i-i

v* 01

where

n uI(3) P(u t) - Hf P iJ[ P i(t)] - i

i-i

(4) P(v*j It, uij = 0)= E akhk(t)
k-1
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and f(t) is the ability density. Notice that Equation 3 is the likelihood

function for the three-parameter logistic model (i.e., Lord's (1980)

Equation (4-20) and Hulin, Drasgow, & Parson's (1983) Equation (2.6.2)). It

is the ak's in Equation 4 that are to be estimated. Actually, each option

has its own set of J k's , but to avoid notational complexity we have not IP

added another subscript to the ak'S .

It is important to observe that local independence is not used to I
derive Equation 2 from Equation 1; only the definition of conditional K

probability is used. Tnus, even when skipping items or not teaching items

(response "5") fails to obey the assumption of local independence, an

accurate estimate of the conditional probability of non-response for

examinees at each ability level may be obtained.

Quadratic programming is used to obtain maximum likelihood estimates of

orthonormal basis function weights for the COCCs in Equation 4. The weights

for the COCCs are easier to estimate than the weights for OCCs since the

JCCs for easy items an UCCs for rarely chosen options are close to zero,

which causes the a4< to become indeterminate; COCCs are not usually close

to zero. Since the QCZ at 6 = t is equal to the COCC times 1 - P.(t)

the &CCs are available after the CUCCs have been obtained. The COCCs are

intrinsically interesting As weli is mdthematicaliy tractable since their

shapes can be used t: study the properties of effective distract.ors.

Tne quadrati2 programming methods used by Levine and Williams (1987)

are convenient because they allow plausible constraints to be placed on the

COCCs. One constraint ii positivity: CuCCs are not allowed to become

negative. In our analyses all COCCs were required to equal or exceed .001.

A second constraint placed on CUCCs is smoothness: The COCCs were not

allowed to oscillate widely. The smoothness constraint can be implemented

Jil1--1 11Q 111! Ii j. 1

M&
A,
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by restricting the third derivative of the COCCa to be less than .00. Tni3

condition can be thought of as requiring each small piece of tne graph Uf

the COCC to have a very accurate quadratic approximation. (A restrv, tio!, 3n

the second derivative would force the COCC to be locally linear and i r"rst

derivative constraint would force the COCC to be locally constant.)

In summary, orthogonal basis functions h it) are derived from 1"'s.

which are estimated by programs such as LOGIST or BILOG. COCCs are

represented as linear combinations of the basis functions in Eq. 4, and

marginal maximum likelihood estimates of the weights a in this equation
J

are obtained. 0CC values can then be obtained by multiplying COCC vaiues

times (I-Pi )

Estimation and Information

Data set. The data set used in our analyses was a spaced sample or

2978 examinees; this data set is fully described in the Profile of A eridan

Youth (1982). These examinees answered the 30 item Armed Services

Vocational Aptitude Battery (ASVAB) Arithmetic Reasoning (AR) test. Each

item on this test has four options.

ICC estimation. The first step in the MFS analysis is to estimat-

ICCs from the dichotomously scored item responses. To tnis end, the item

responses of the examinees described above were scored dichotomOwIsl. A.

unanswered items were scored as incorrect (since skipping ank not i.n:-

are treated as a separate--and incorrect--response option). Tnen tn"

(version 2B) computer program (Wood, Wingersky, & Lord, 1"b was asec .

estimate item and person parameters. Estimates or item di srimi' atvn

parameters ranged from about 0.5 to 2.0 and estimates of item liffiut os

varied from about -3.0 to 1.4 (mean - .14. SD = .99).
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for All 11,914 examinees in the American Youth data set, forming 25 ability

strata on the basis of estimated abilities by using the 4th, 8th, ... , 96th

percentile points of the standard normal distribution as cutting scores, and

tnen computing the proportion of examinees selecting each option among the

subset of examinees who answered the Item incorrectly. The centers of the

vertioal lines correspond to the observed proportions and they are plotted

above the category medians (the 2nd, 6th, ..., 98th percentile points of the

standard normal distribution). The vertical lines represent approximate 95%

confidence intervals for the observed proportions (t two standard errors,

where the observed proportion is used to compute the standard error).

Observed proportions of 0 and 1 are plotted as plus signs and are offset

slightly from their true locations so that they will be visible.

The AR items seem to be more-or-less ordered by difficulty.

Consequently, the 95S confidence Intervals for the first few Items in

Appendix I are very wide because these items are easy and so few examinees

choose incorrect options. Confidence intervals for later items are much

narrower and provide a severe test for COCC estimates. Item 27, for

example, shows that the COCC estimates provide a very good description of

option choice. Notice that the COCC for the omit category lies below most

observe1 proportions. This occurs because examinees with high omitting

rates were excluded from the sample used to estimate COCCs, but were

included in the total sample used to compute the proportions displayed in

Appendix 1.

CCC estimation verification. The figures presented in Appendix I show

tnat MF. estimates of COCCs closely follow the actual patterns of item

responses. It is difficult, however, to understand the accuracy of COCC

estimates from these figures because the true COCCs are not known. To gain
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further insights into the properties of MFS estimates or COCCa, a simulation

data set of 3000 response patterns was generated. Simulated abilities were

sampled from the standard normal distribution, probabilities of correct and

incorrect responses were determined from the ICCs obtained by the LOGIST run

described previously, and probabilities of option selections (for responses

simulated to be incorrect) were computed using the MFS estimated COCCs.

Thus, the assumptions used to estimate COCCs correspond exactly to the way

in which the data set was generated.

COCCs were re-estimated from the simulation data set. The true ability

density (the standard normal) was used in Equation 2 and the true ICC values

were used to compute probabilities of correct and incorrect responses. The

true ability density and ICC values were used because we wanted to determine

the errors of COCC estimates in a way that was not confounded with

inaccuracies in density estimates and ICC estimates.

The results of the simulation study are shown in Appendix 2, which

presents the re-estimated COCCs for all 30 items. Heavy lines indicate the

re-estimated COCCs and thin lines indicate the true COCCs. Observed

proportions and their approximate 95% confidence intervals are shown for the

simulation sample of N = 3000. The observed proportions are not plotted if

five or fewer incorrect responses were made in an ability stratum.

Item 2 shows estimated COCCs that are very close to the true COCCs for

all ability levels. This is remarkable because there were almost no

incorrect responses made by simulated examinees with above average ability.

Item 3 shows that we cannot always expect to have well-estimated COCCs when

there are no data available: Large differences between true and estimated

COCCs occur at high ability levels. The COCCs are, however, accurately
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estimated in ability ranges for which there were very few incorrect

responses.

From an inspection of the plots in Appendix 2 it seems evident that

COCC values are accurately estimated when there are six or more incorrect

responses in adjacent ability strata. Sometimes COCC values are well-

estimated when fewer incorrect responses are available, but this seems to be

a matter of chance. Notice, also, that COCCs for the omit option are not

underestimated in this analysis as they were in the analysis of the real AR

data. In the present nalysis, all response vectors were used; there was no

restriction on omitting as in the previous analysis. In this simulation

study data were unidimensional in the sense that the probability of omitting

depended only on ability, although it was permitted to vary from item to

item. It would have been more realistic to use a two dimensional simulation

model with examinees varying both in ability and tendency to omit.

Information function. Information functions for the dichotomous and

polychotoeou modelings or the AR test are shown in Figure 2. An expression

for the information function of the three-parameter logistic model is

LP'(t)Jlit

(5) Information at t - £ 
I PI(t )  I QI(t )

where Q, " I - P and P' and Q' are the first derivatives of P and

. The Information function of the polychotomous model is

P' it P J )' (t K

(6) Information at t -Z

where P is the OCC for option j on item i int i' is its firstij IJ

derivative. The correct 3ption makes the same ,)ntributi)n t) information

for both the Jli.fotonous trul polyenotom)as icorings, nd 7. trw first term
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on the right sides of Equations 5 and 6. Thus, any differences in

information are entirely due to the treatment of incorrect responses. Using

Jensen's inequality (Halmos, 1950) it can be shown that

2 2J [P (t)]2  [Qi(t)]

J-2 PiiT t  Q i(W

(cf., SameJima, 1969; Park, 1983). Thus, any increase in information is

entirely due to polychotomous scoring.

Insert Figure 2 about here

Figure 2 shows that there are moderate gains in information due to

polychotomous scoring of the AR items for low to moderately high abilities.

Little or no information is gained for high ability examinees; this latter

finding Is not surprising because high ability examinees are expected to

answer nearly all the items correctly.

It should be noted that the AR Items were not written with

polychotomous scoring in mind and so the gains in information shown in

Figure 2 are more-or-less accidental. Larger gains might be realized if

item writers knew the attributes of incorrect options that typically lead to

substantial increases in information.
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Appropriateness Measurement

Purpose

In this section we compare the effectivenesses of dichotomous and

polychotomous models for detecting aberrant responses patterns. By

comparing detection rates of optimal indices it is possible to compare the

maximum detection rates possible for a given form of aberrance. In this

section, as in the previous section, the dichotomous model is a submodel of

the polychotomous model; hence any increase in detection rates is due to

modeling incorrect responses.

For an optimal index to be truly optimal, it must be computed from the

true ICCs or OCCs and, therefore, the optimal indices for dichotomous and

polychotomous scorings of the simulation data were computed using the

simulation ICCs and OCCs. In any practical application, however, only

estimated ICC3 and OCCs will be available. Consequently, we decided to

examine one aspect of the robustness of optimal indices by computing the

optimal index for dichotomously scored responses using ICCs estimated by the

LOGIST (Wood, Wingersky, & Lord, 1976) computer program. Further research

designed to develop extensions of optimal indices for use in practical

settings will be warranted if the optimal indices computed from estimated

ICCs are found to be nearly as powerful as optimal indices computed from the

true ICCs.

Several practical indices were also evaluated. Most of these indices

were computed from the dichotomously scored item responses. One index,

however, is the natural extension of a dichotomous model index to the

polychotomous case. Detection rates for the practical indices indicated (1)

which were relatively more powerful and less powerful; and (2) the extent to

which the maximum detection rates were attained.
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Overview

The ICCs and OCCs estimated for the AR test from the sample of N -

2,978 were used as the "true" item parameters in a simulation study.

Initially, a sample of N = 3000 simulated response patterns was created and

used as a test norming sample. This data set was used to determine the item

and test statistics required to compute all but one (z p) of the practical

appropriateness indices listed in the next section. Then a normal sample of

N - 4000 responses vectors was created. In addition, sixteen aberrant

samples of N = 2000 were generated to simulate several forms of aberrance.

Optimal indices and all the practical indices were then computed for the

normal sample and aberrant samples. Rates of detection of aberrant

responses vectors at various false alarm rates were determined for each

appropriateness index and each form of aberrance.

Appropriateness Indices

In this section we list the appropriateness indices that are evaluated.

For the sake of brevity we shall not provide extensive technical detail.

This information is given by Levine and Drasgow (1984; 1987) for optimal

indices and by Drasgow, Levine, and McLaughlin (1987) for practical indices.

Additional references are given when appropriate.

Polychotomous model optimal indices (LR p). Levine and Drasgow (1984)

used the Neyman-Pearson lemma to derive a class of most powerful

appropriateness indices. These indices require the probabilities of

observing the polychotomously scored response vector v* assuming that it

was generated by a normal process (PNormal (v*)) and assuming that it was

generated by a specified aberrant process (PAberrant (v*)) . The

decision procedure that classifies response vectors as aberrant when

PAberrant (v*) 9 constant • PNormal (v*)
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where the constant is chosen to control the false alarm rate or Type I error

rate, is at least as powerful as any other test. Thus, the polychotomous

model optimal indices studied here have the form

LRp . PAberrant (V*) / PNormal (v*) ,

where the probabilities are computed using three-parameter logistic ICCs to

determine conditional probabilities of correct responses and MFS OCCs to

determine conditional probabilities of incorrect responses. Technical

details about the form of LR for specific types of aberrance and anP

efficient computing algorithm are given by Levine and Drasgow (1984; 1987).

Dichotomous model optimal indices (LR,). These indices are identical

to the LR indices except that the only information used in theirp

calculation is the pattern of correct and incorrect responses u* , i.e.,

the dichotomously scored item responses. This class of indices, therefore,

provides the highest rates of detection when the choice of incorrect option

is ignored.

Dichotomous model optimal indices computed using estimated item

parameters (LRI). For optimal indices to be truly optimal they must be

computed using item parameters -- not item parameter estimates. In previous

work (Levine & Drasgow, 1982), we found that the values of some

appropriateness indices were almost unaffected when item parameter estimates

were used in place of item parameters. In the present research, optimal

indices for the three-parameter logistic model were also computed using

estimated item parameters.

Dichotomous and polychotomous model standardized 0 (z, and z p).

These indices, originally developed by Drasgow, Levine, and E. Williams

(1985), are well-standardized (i.e., their conditional distributions given
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ability are nearly invariant across ability levels) and are, therefore,

well-suited to practical applications. In essence, they compare the

likelihood of a vector of item responses to the expected likelihood given

the examinee's ability estimate. In previous research (Levine & Rubin,

1979; Levine & Drasgow, 1982,; Drasgow, Levine, & E. Williams, 1985), it has

been found that aberrant response vector tend to have likelihoods that are

smaller than expected of normal response vectors, and thus, the standardized

likelihoods z, and z serve as effective appropriateness indices.
p

Fit statistic (F1 and F2). Two fit statistics suggested by Rudner

(1983) as generalizations of Rasch model fit statistics used by Wright and

his colleagues are

F1 -1 r[u -
2 ()] / [Pi(e)Q (e)]

ni=

and

n 2 n *

F2 [u - P (0)] / E P (e)Q (e)
n1 1  ii1

Notice that F1 and F2 tend to be large when an examinee misses items

(u = 0) that should be answered correctly (P(e) near 1) and correctly
ii

answers (uI = 1) items that should be very difficult (Pi(e) near 0)

Drasgow, Levine, and McLaughlin (1987) found F2 to be well-standardized.

F1, however, was badly standardized because relatively many large values

were observed for simulated normal, high ability examinees.

Caution indices (S, T2, and T4). Three "caution" indices were

evaluated. The first is the original Sato caution index S described by

Sato (1975) and Tatsuoka and Linn (1983). The other two caution indices are

the second (T2) and fourth (T4) standardized extended caution indices

OR M ,iliI p
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developed by Tatsuoka (1984). Drasgow, Levine, and McLaughlin (1987) found

T4 to be better standardized than T2 , so T4 should be preferred when

their detection rates are comparable.

Likelihood function curvature statistics (JK and O/E). It is expected

that the likelihood function will be "flatter" for aberrant response vectors

than normal response vectors at the maximum likelihood ability estimate .

Two indices that provide measures of the flatness of the likelihood function

were evaluated. The first (JK) is a normalized jackknife estimate of the

variance of e and the second is the ratio of the observed and expected

information about ability contained in the dichotomously scored item

responses. Both of these indices are described by Drasgow, Levine, and

McLaughlin (1987), who showed that JK and O/E are well standardized.

Method

Data Sets. A test norming sample of 3000 responses vectors was created

by sampling 3000 numbers (6's) from the normal (0,1) distribution

truncated to the [-5.0, 3.5] interval. A normal sample of 4000 response

vectors was also generated in this way. Two thousand aberrant response

vectors were created in each of sixteen conditions. These conditions

resulted from varying three factors: the type of aberrance (spuriously

high; spuriously low), the severity of aberrance (mild; moderate), and the

distribution from which simulated abilities were sampled.

Eight of the aberrant samples contained spuriously high response

vectors and the remaining eight samples contained spuriously low responses

vectors. Spuriously high responses patterns were created by first

generating normal response vectors (using the AR three-parameter logistic

ICCs to determine the probabilities of correct responses and the AR COCCs to

determine probabilities of incorrect option selection) and then replacing a
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given percentage k of simulated responses (randomly sampled without

replacement) with correct responses. Spuriously low response patterns were

also created by first generating normal response vectors. Then a fixed

percentage of items were randomly selected without replacement and the

responses to these items replaced with random responses ( i.e., a response

was replaced by option A with probability .25, by option B with

probability .25, ..., and by option D with probability .25). Mildly

aberrant response patterns were generated by using k = 17% (i.e., 5 of 30

items). Moderately aberrant response patterns were created using k = 33%

(i.e., 10 of 30 items).

The third variable manipulated was the ability level of the aberrant

sample. Abilities for the spuriously high samples were sampled from four

parts of the normal (0,1) distribution truncated to [-5.0, 3.5]: very low

(Oth through 9th percentiles), low (10th through 30th percentiles), low

average (31st through 48th percentiles), and high average (49th to 64th

percentiles). In all cases percentile points were determined after the

truncation to [-5.0, 3.5]. These intervals were used because it is more

important to detect spuriously high response patterns for low ability

examinees than for high ability examinees. Similarly, it is more important

to detect spuriously low responses by high ability examinees. Consequently,

abilities were sampled from four average to high ability strata for the

spuriously low samples: very high (93rd percentile and above), high (65th

through 92nd percentiles), high average (49th through 64th percentiles), and

low average (31st to 48th percentiles). The ability percentiles used here

correspond to the percentiles forming United States Armed Service Vocational

Aptitude Battery mental categories.
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Analysis. All the item and test statistics required to compute the

practical appropriateness indices were computed usIng the test norming

sample. These quantities were computed as the first step in the analysis

and then used in all subsequent analyses. LOGIST (Wood, Wingersky, & Lord,

1976) was used to estimate three-parameter logistic item parameters and a

Fortran program was written to compute the other quantities required.

The practical appropriateness indices and LR; were then computed for

the 4000 response vectors in the normal sample. The item and test

statistics estimated from the test norming sample were used in these

calculations. This procedure simulates the process by which practical

appropriateness indices would be computed in many applications. Optimal

indices were also computed for the normal sample for four aberrant

conditions: 17% spuriously high, 33% spuriously high, 17% spuriously low,

and 33% spuriously low. The ICCs and COCCs used to generated the data were

used to compute LR and LR.

The practical appropriateness indices were computed for each of the 16

aberrant samples. In addition, the 17% spuriously high optimal index was

computed for the four samples with this form of aberrance, the 33%

spuriously high optimal index was computed for the four samples with this

form of aberrance, etc. The proper interpretation of the optimal indices

computed in the present research is the following: They are optimal for the

specified form of aberrance, say 17% spuriously high, in a population where

the ability density is a truncated normal for both the normal and aberrant

populations and a response vector is either normal or 17% spuriously high.

The normal group does in fact have this ability distribution. By

stratifying on a subinterval of [-5.0, 3.5] for the aberrant group, we

p.p. I I
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determined the power of the index that is optimal for the popul4tion is a

whole in a particular subpopulation.

Evaluation Criteria. The main criteria for evaluating the

appropriateness indices were the proportions of aberrant response patterns

correctly identified as aberrant when various proportions of norma. -esponse

patterns were misclassified as aberrant. These proportion: shall De

presented for all 16 aberrance conditions. This allows us to determine what

types of aberrant response patterns have acceptably high detection rates

using optimal methods and using practical methods. The characteristics of

response patterns that cannot be detected are evident as a consequence of

examining the 16 aberrance conditions separately.

Results

The results for the spuriously high conditions are given in Tables 1

through 4. The results for the lowest ability group are shown in Table 1.

In-this table it is evident that cheating on five randomly selected items is

not very detectable: At a 2% false alarm rate only 28% of the simulated

cheaters are detected by the optimal LRp Jndex. The best of the practical

indices, z. and F2 , detect 18% and 20%, respectively. Cheating on 10

items (the 33% condition) is reasonably detectable. For example, LR-- p

detects 61% and LR, detects 54% at a 2% false alarm rate. At this false

alarm rate, z. , F2 , and T4 detect 44%, 41%, and 50%, respectively.

Finally, detection rates for optimal indices computed from true and

estimated ICCs are very similar for almost all false alarm rates in 7atle 1.

Insert Tables 1 through 4 about here
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pruvided by tests by writing items with highly informative incorrect

options.

An appropriateness measirement simulation study was also conducted to

compare the polychotomous model with a dichotomous submodel, namely the

three-pardmeter logistic. Several important results were obtained. First,

for tne 3puriously 1ow treatment that simulates atypical educations,

misgrildmig answers to a portion of the test, unusual creativity, etc., we

-4fnl tnat )ptima three-parameter logistic appropriateness indices fell far

inort :f trei" optimal polychotomous model counterparts. At some false

f.irm rates, the -ates )f detection of aberrant response vectors were more

1-nan 1,10% .igner for the polychotomous optimal indices. Thus

i,ropri iterie3s measurement constitutes one Important practical testing

,rot em where substantial gains are made by the use of a polychotomous item

response model.

The results of the appropriateness measurement simulation study also

inwe1 that tne praeti-_ al polychotomous model index z was not aP

irti :,itrl ~g~oo index. Its detection rates were not close to optimal for

*±ither sprliusiy hl)dh or 3puriously low treatments. This result, in

',ijno't) n with the results described, previously point to the need to

,o-it' '.et'ier polphotc1m)us appropriateness indices that can be used in

r i.ird res t ilbtaneI inr the appropriateness measurement research is

. I I F. , nA r ndies effectively detect iberrance in

r. ,t t, t nr-e -imete r Iog-3ti,, optimal indic es (but not polychotmous

td.. Ipt ndl l di,'es. Therefore, if one is satisfied with dichotomous

i.-)r ng )r item respons-s **or some particular application, then z, , F2

. >tn Ihe ;se, with conf Idnc, to detect inappropriate test scores.
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Means for implementing appropriateness measurement in practical settings are

discussed by Drasgow and Guertler (1987).

Finally, the LR 1' indices provided detection rates that were nearly as

high as the rates provided by the optimal LR, indices. Thus, the three-

parameter logistic optimal indtces seem to be robust to item parameter

estimation error. This result is surprising because extensive computations

are required to evaluate LR,'; small errors (in ICC values) would be

expected to grow progressively larger as the computations progressed.

Nonetheless, only small differences between values of LR, and LR,' were

observed for individual response patterns. Thus, we are encouraged to

continue research on "almost-optimal" indices that are based on likelihood

ratios and could be used In practical settings.

Conclusion

COCC estimation provides opportunities to improve testing In a variety

of ways: ability estimation, the theory and practice of item writing,

appropriateness measurement. Applications in areas such as item and test

bias and adaptive testing may also be fruitful. Consequently, we conclude

that there is Information In incorrect responses and that polychotomous item

response models can make important contributions to psychological testing.
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raole 1

Selected ROC Points for Spuriously High

Response Patterns Generated from the 0-9% Ability Range

False Proportion Detected by

Alarm
Rate LR LR3 LRI z z3  F1 F2 S T2 T4 JK O/E

p P

17% Spuriously High Treatment

.001 04 04 01 00 03 00 01 00 00 01 00 00

.005 11 12 11 03 06 00 08 00 04 04 02 02

.01 16 19 17 05 12 02 13 03 07 06 03 04

.02 28 29 26 08 18 04 20 12 13 11 06 07

.03 34 33 30 11 25 07 24 18 18 14 09 09

.04 38 37 34 13 29 10 28 24 22 18 13 12

.05 43 40 38 15 33 15 32 27 26 22 15 14

.07 48 45 44 19 41 24 40 37 32 26 22 19

.10 52 50 49 26 51 36 50 49 42 33 29 25

33% Spuriously High Treatment

.001 23 24 17 02 10 00 04 00 06 12 00 00

.005 40 33 27 07 25 00 15 00 28 27 00 04

.01 45 45 43 12 30 01 27 06 37 34 00 09

.02 61 54 52 17 44 05 41 17 50 46 01 17

.03 67 59 58 22 50 16 47 24 60 52 02 24

.04 71 64 63 25 56 23 55 32 65 57 03 37

.05 72 67 66 31 62 30 59 37 69 61 03 37

.07 77 71 70 37 66 42 68 47 74 67 07 47

.10 81 75 75 46 75 57 76 60 81 73 19 57



Table 2

Selected ROC Points for Spuriously High

Response Patterns Generated from the 10-30% Ability Range

False Proportion Detected by

Alarm

Rate LR LR, LRI z z , F1 F2 S T2 T4 JK O/E
P P

17% Spuriously High Treatment

.001 02 01 00 00 02 00 00 00 00 01 00 00

.005 09 07 07 01 05 00 03 00 05 04 00 01

.01 14 14 14 04 09 00 06 00 07 07 00 03

.02 26 25 22 06 14 01 11 04 14 12 01 05

.03 31 29 29 08 19 03 14 06 20 16 02 07

.04 34 33 33 10 23 06 18 10 24 20 02 10

.05 40 36 37 12 27 09 21 12 27 23 03 14

.07 46 43 43 16 34 14 27 18 33 28 06 20

.10 52 50 51 23 43 24 37 28 42 34 14 27

33% Spuriously High Treatment

.001 16 16 13 00 04 00 00 00 03 09 00 01

.005 31 27 23 03 14 00 07 00 20 23 00 06

.01 37 40 39 05 20 00 15 01 28 29 00 10

.02 53 50 50 08 30 03 27 06 42 41 00 20

.03 61 56 57 12 37 08 34 10 51 47 00 27

.04 65 63 62 14 42 12 42 16 58 53 00 34

.05 68 66 65 19 49 17 46 20 62 58 00 40

.07 73 70 70 25 54 28 56 29 67 63 05 51

.10 78 74 75 33 64 44 67 41 74 70 18 60

m.



Table 3

Selected ROC Points for Spuriously High

Response Patterns Generated from the 31-48% Ability Range

False Proportion Detected by

Alarm

Rate LR LR, LRI z z, F1 F2 S T2 T4 JK O/E
p p

17% Spuriously High Treatment

.001 00 00 00 00 01 00 00 00 00 01 00 00

.005 03 03 04 00 03 00 01 00 04 04 00 00

.01 06 07 08 02 06 00 02 00 06 06 00 01

.02 15 15 14 03 09 00 05 00 12 12 00 05

.03 20 19 19 05 14 03 07 02 17 15 00 08

.04 24 23 24 06 17 06 10 03 21 18 00 10

.05 29 26 28 07 20 07 13 04 23 22 00 13

.07 36 34 35 10 25 12 18 07 29 26 01 20

.10 43 42 43 15 33 18 26 12 36 32 07 29

33% Spuriously High Treatment

.001 06 10 07 00 02 00 00 00 02 06 00 01

.005 17 16 14 01 07 00 03 00 12 16 00 05

.01 22 27 26 02 10 00 08 00 18 22 00 08

.02 39 36 37 04 17 04 16 02 27 32 00 17

.03 48 43 45 05 22 08 21 05 36 38 00 23

.04 53 51 49 07 27 12 27 07 41 43 00 29

.05 56 55 54 09 33 16 31 09 45 47 00 34

.07 63 61 61 13 37 23 40 14 50 53 07 44

.10 71 67 68 20 46 36 51 22 59 60 19 53

ja!



Table 4

Selected ROC Points for Spuriously High

Response Patterns Generated from the 49-64% Ability Range

False Proportion Detected by

Alarm
Rate LR LR3 LR; z z, F1 F2 S T2 T4 JK O/E

p p

17% Spuriously High Treatment

001 00 00 00 00 00 00 00 00 00 00 00 00

.005 00 00 00 00 01 00 00 00 02 03 00 00

.01 02 01 01 00 03 01 01 00 04 04 00 00

.02 07 06 03 01 05 01 03 00 07 08 00 00

.03 11 09 05 01 08 04 04 00 11 11 00 06

.04 14 13 07 02 10 06 07 01 14 14 00 09

.05 18 16 09 03 13 08 08 01 16 17 00 12

.07 25 23 14 06 17 11 13 03 20 21 01 17

.10 33 30 23 09 23 16 19 05 26 27 07 24

33% Spuriously High Treatment

.001 01 02 00 00 00 00 00 00 00 02 00 00

.005 05 04 02 03 03 00 01 00 05 07 00 01

.01 08 10 05 00 04 02 04 00 07 10 00 02

.02 19 16 09 01 07 07 08 01 12 17 00 06

.03 28 23 14 03 10 11 11 02 16 20 00 08

.04 34 32 18 03 12 14 15 03 20 25 00 11

.05 37 37 21 05 16 17 17 04 23 29 00 14

.07 48 45 29 08 19 23 23 07 28 35 03 20

.10 60 55 41 13 25 31 31 12 35 40 11 28



Table 5

Selected ROC Points for Spuriously Low

Response Patterns Generated from the 31-48% Ability Range

False Proportion Detected by

Alarm

Rate LR LR3 LRI z z, F1 F2 S T2 T4 JK O/E
pp

17% Spuriously Low Treatment

.001 01 00 00 00 00 00 00 00 00 00 00 00

.005 05 01 01 03 02 00 01 00 02 02 00 00

.01 09 03 03 05 04 01 02 00 03 03 01 01

.02 15 06 07 08 07 02 04 00 06 07 01 02

.03 18 10 12 12 10 04 05 01 09 09 02 03

.04 21 14 15 14 13 07 07 03 12 12 03 05

.05 24 17 18 15 15 10 09 04 14 14 05 07

.07 29 22 23 21 19 17 12 07 18 17 07 10

.10 35 28 28 27 26 25 17 11 23 22 12 14

33% Spuriously Low Treatment

.001 07 01 01 01 02 00 00 00 00 01 00 00

.005 14 03 04 07 05 00 04 00 03 04 01 01

.01 22 08 09 12 10 02 07 00 05 07 02 01

.02 30 14 16 18 15 05 11 03 09 11 04 03

.03 36 20 22 23 20 09 13 06 14 15 07 04

.04 41 24 26 27 23 13 17 10 16 19 10 06

.05 45 29 30 31 26 17 19 11 19 22 13 07

.07 51 36 37 36 32 27 24 17 22 27 17 11

.10 59 44 44 44 38 36 31 25 29 33 24 16

ro



Table 6

Selected ROC Points for Spuriously Low

Response Patterns Generated from the 49-614% Ability Range

False Proportion Detected by
Alarm __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Rate LR pLR, LRI, z p z 3  F1 F2 S T2 T14 JK O/E

17% Spuriously Low TreatmentI

.001 13 02 02 00 02 00 00 00 00 01 00 00

.005 22 09 08 014 014 00 01 00 05 05 00 00

.01 26 114 13 07 09 03 03 00 08 07 00 01

.02 32 21 20 11 114 09 07 01 13 13 00 014

.03 314 26 25 16 19 17 10 03 19 16 00 06

.014 38 30 28 19 22 21 13 014 22 20 00 08

.05 141 33 31 23 25 214 15 05 26 22 00 11

.07 46 37 35 29 31 31 20 08 29 27 03 16

.10 51 42 40 37 38 314 28 13 36 32 09 21

33% Spuriously Low Treatment

.001 214 09 08 02 08 00 00 00 03 05 00 00

.005 314 16 15 15 114 00 06 00 114 12 00 02

.01 43 25 214 23 22 03 11 01 18 17 00 03

.02 51 33 32 31 29 12 17 014 26 25 00 08

.03 55 39 38 37 36 22 22 07 33 29 01 12

.014 58 43 141 41 39 29 26 10 38 314 01 16

.05 61 46 45 145 143 35 29 13 141 38 02 19

.07 66 51 50 52 49 144 36 19 45 1414 06 25

.10 71 58 56 60 57 52 45 27 53 51 114 33

40



Table 7

Selected ROC Points for Spuriously Low

Response Patterns Generated from the 65-92% ALility Range

False Proportion Detected by

Aiarm

Rate LR LR, LRI z z, F1 F2 S T2 T4 JK
p p

17% Spuriously Low Treatment

.001 35 15 14 01 05 01 00 00 01 0 o0 :2

.005 45 33 31 09 11 11 05 01 11 09 00 JO

.01 51 41 38 15 19 24 11 05 15 14 300 01l

.02 57 46 45 20 27 40 20 13 25 21 00 01

.03 60 50 49 25 34 45 24 1) 32 26 00 J3

.04 63 53 51 31 38 53 30 24 36 30 00 04

.05 65 55 53 35 42 57 34 27 39 35 00 06

.07 68 59 57 42 50 61 41 33 43 40 04 10

.10 71 63 61 51 5- 65 50 41 53 48 12 10

33% Spuriously Low Treatment

.001 53 31 29 04 26 00 03 00 15 22 00 02

.005 61 44 41 25 39 05 21 02 40 39 00 09

.01 67 53 51 34 52 20 34 09 47 46 00 15

.02 72 59 57 45 61 42 47 21 59 57 00 25

.03 75 63 61 52 67 54 54 29 67 31 00 30

.04 77 66 63 57 70 60 61 36 71 67 00 38

.05 78 68 66 61 74 64 64 40 74 70 00 43

.07 81 72 70 69 79 71 71 49 79 75 15 52

.10 84 75 74 77 84 79 79 58 84 80 33 61



Response Patterns ieneratei .",m tne 4i-'Ju% At:.ity 4dng"

False Pr>3portion .'etecteC t~y

at R, F "K : Z, j

'7% 3puriousiy .ow Treatment

. I3 "5 22 2C 0) 44 " ' JC 30

-~49 443
.31 11 49 ,46 13 2 0 43 ' 2 2 18 j0 c X

.02 t' 54 53 26 29 55 30 35 13 ?9 33 30

.03 ,9 58 5b 32 37 60 35 "' 4' :) 0 O

60 58 37 41 63 41 48 47 ', 30 O0

.05 2 e2 60 40 46 66 45 51 5 47 30 0'

.07 -4 65 62 48 54 71 53 58 56 53 02 03

.11 77 68 f6 58 63 75 63 65 b4 62 '7 06

33% Spuriously Low Treatment

.301 64 42 40 34 32 02 06 00 20 33 JO 02

.005 12 53 5' 27 49 17 32 08 51 52 00 08

.01 T6 6! 59 39 62 36 t 21 59 60 00 13

.02 81 67 64 51 71 59 bl 39 69 73' 00

.03 83 70 68 59 77 69 67 48 74 '4 00 27

.135 72 70 64 79 74 72 55 80 78 00 33

.05 86 7- 73 68 82 78 75 59 83 81 00 38

.07 87 77 15 75 86 84 oO 68 86 84 21 48

.10 90 -9 77 82 90 87 86 76 9J 8" 41 57



'ijAr e _at JL :)n

A:~e&~ "edIw.;g tes~



00



Information

0 CAi 0 C,0Cl
CO)

cr3

L-M



14FS Theory

Appendix 1

Goodness of' Fit of Arithmnetic Reasoning COCCs Estimated from a Sample of'

N-2,978 and Evaluated Using the Entire Sample or N-11,914.
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MFS Theory

Appendix 2

Estimated COCCs, Simulation COCCs, and

Empirical Proportions from Estimation Sample.
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